

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

Pavel Matějka

From vibrational spectroscopy to nanoscopy - scanning near-field infrared imaging - tip-enhanced Raman spectrscopy

VŠCHT Praha - A Ko7 A

Raman AFM - TERS - Renishaw -

Scheme of levels

Infrared spectroscopy

Fundamental selection rule of infrared absorption

BAND INTENSITIES PROPORTIONAL TO CHANGES of DIPOLE MOMENT in the course of VIBRATIONAL MOTION

Raman spectroscopy Fundamental selection rule of Raman scattering

 $\frac{\partial \alpha}{\partial q} \neq 0$

BAND INTENSITIES PROPORTIONAL TO CHANGES of POLARIZABILITY in the course of VIBRATIONAL MOTION

IR and **Raman** spectrum of untreated PS

Surface-enhanced infrared absorption – SEIRA /ATR

 Nanoparticles and/or nanostructures are required for signal enhancement

Surface-enhanced Raman scattering

 Nanoparticles and/or nanostructures are required for signal enhancement

Vibrational microscopy

- Chemical images of samples
 - Generate from peak heights, areas, peak ratios, correlation, results of principal component analysis etc.
 - •Useful for monitoring changes in chemical composition in a sample
- 2D-images scanning and mapping
- 3D-images depth profiling

Microspectroscopy

Infrared spectroscopy andPhysmicroscopic imaging4651of stratum corneum models and skin

Phys. Chem. Chem. Phys., 2000, 2, 4651-4657

Comparison of the Tablets

Different particle size of API

• Raman chemical maps of cross-sections of tablets

Batch 1 5x objective

Batch 2 5x objective

Tablet / detail

50x objective

Raman map

Nanospectroscopy vs. microspectroscopy

- Microspectroscopy techniques of far field
 - The maximum spatial resolution in a properly designed microscope is limited by the diffraction of light.

- Nanospectroscopy techniques of near field
 - The maximum spatial resolution is under diffraction limit, it is limited mostly by probe aperture (probe diameter).

Infrared nanoscopy

• AFM-IR - PTMS

• IR SNOM – SNIM – mainly sSNIM/sSNOM

Infrared nanoscopy

Monitoring TriAcylGlycerols Accumulation by Atomic Force Microscopy Based Infrared Spectroscopy in *Streptomyces* Species

AFM Tip

Sample

Thermal expansion-

(A) AFM topography (B) chemical mapping (C) local IR spectra

Infrared nanoscopy

• IR SNOM – sSNIM

Infrared nanoscopy

• IR SNOM – sSNIM

VCT Prague - A KO7 A

SNIM - NeaSpec Micrometer squares, height 20 nm - IR images

Intensity image

Phase image

NCT Prague - A KO7 A

SNIM - NeaSpec

Micrometer squares - height 20 nm - IR images

Intensity image

Phase image

Infrared nanoscopy

• IR SNOM – sSNIM

Mechanical amplitude signal (A) and optical signal (B).

Raman nanoscopy

TERS spectroscopy and imaging

TERS – LOCAL FIELD

Figure 2. FDTD simulations of the electric field distribution for a single Au tip (a), and a gold tip held at distance d = 2 nm from a gold substrate surface. The polarization E and wave vector k of the incoming light are displayed in the schematics. *M* stands for the maximum.

VÝVOJ EXPERIMENTÁLNÍCH METODIK PRO HROTEM ZESÍLENOU RAMANOVU SPEKTRSKOPII

- BAKALÁŘSKÁ PRÁCE 2015/16

Martin Král Ústav fyzikální chemie VŠCHT Praha

VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE

TERS s STM

Hotspot

Mapování při 1376 cm⁻¹

TERS s mikroskopií střižných sil

Advances in TERS (tip-enhanced Raman scattering) for biochemical applications

Regina Treffer*, René Böhme†, Tanja Deckert-Gaudig*, Katherine Lau*1, Stephan Tiede‡, Xiumei Lin* and Volker Deckert*†²

Figure 3 | TERS on a single DNA strand

(a) AFM topography image of a $(A_{10}C_{15})_8$ DNA single strand and schematic depiction of the measurement points of the TERS experiment. (b) The corresponding TERS spectra; important marker bands are highlighted.

pubs.acs.org/NanoLett

Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy

Dmitry Kurouski,[†] Michael Mattei,[†] and Richard P. Van Duyne^{*,†,‡}

[†]Department of Chemistry and [‡]Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States

KEYWORDS: Tip-Enhanced Raman Spectroscopy (TERS), Nanoscale Electrochemistry, Cyclic Voltammetry (CV)

DOI: 10.1021/acs.nanolett.5b04177 Nano Lett. 2015, 15, 7956-7962

FINAL REMARKS TO "MATERIAL"

In the material sciences,

TERS and IR nanoscopy are gaining attention as appropriate non-destructive and high-resolution (molecular dimension) technique.

The spatial nano-resolution and chemical specificity

- structural and chemical properties of nanocomposites ?
- behavior of molecules on surface of nanostructured material?

FINAL REMARKS TO "BIO"

In the life sciences,

TERS and IR nanoscopy are gaining attention as appropriate label-free and high-resolution (molecular dimension) technique.

The spatial nano-resolution and chemical specificity

- structural properties on cell membranes, polypeptides, fibrils?
- interactions between the human stratum corneum and topically applied liposomal systems?

. B a detan yuxaa 2 2024 + 54021 yuxaa muuu 😭 🕥 🥥