Prosím čekejte...
Nepřihlášený uživatel
logo VŠCHT
iduzel: 61411
idvazba: 72838
šablona: api_html
čas: 2.12.2022 20:23:35
verze: 5243
uzivatel:
remoteAPIs: https://studuj-api.cis.vscht.cz/cms/?weburl=/sis
branch: trunk
Server: 147.33.89.153
Obnovit | RAW
iduzel: 61411
idvazba: 72838
---Nová url--- (newurl_...)
domena: 'www.vscht.cz'
jazyk: 'cs'
url: '/sis/program/22310/AD102'
iduzel: 61411
path: 1/4111/959/8547/4161/1398/8548/4168/4169/8547/4156/1394/8548/39341/39376/8548/48364/48365/8548/43892/43893/8548/39341/39375/8548/38914/38915/8548/29628/29629/8548/43413/8548/28158/28159/8548/24136/24137/8548/28861/28894/8548/25669/25670/8548/20508/20509/8548/22498/22499/8548/4162/1338/8548/15102/15103/8548/10022/10023/8548/4163/1558/8548/4164/945/8548/4165/1404/8548/4168/1410/8548/5338/5339/8548/6214/6522/8548/6996/6998/8548/7925/7928/8548/7925/7928/7937/8548/7924/7930/8548/7924/7930/7941/8548/7922/7926/8548/4167/1406/8548/11349/11351/1/12984/12985/8548/42398/42399/8547/11265/11271/8547/4154/1408/8547/4160/1399/8547/4156/1393/1/4111/942/8547/4161/1397/8547/4159/1395/1/1401/13358/519/61411
CMS: Odkaz na newurlCMS
branch: trunk
Obnovit | RAW
Chemistry and Technology of Materials

Chemistry and Technology of Materials

Doktorský program, Fakulta chemické technologie

Doctoral study of Chemistry and Technology of Materials is a natural consequence of the long-time material research at UCT Prague. The study is based on the cutting-edge physical, chemical and engineering approaches to materials and material technology. Students develop their knowledge about materials; they find and comprehend deeper relationships among preparation and/or production of materials, structure and composition, and their properties. Inevitable part of the study are courses focused to deeper understanding of nature of materials, analytical methods, material characterization, and material technologies.

Uplatnění

Graduates become not only leading experts in the field of material science and technology, but thanks to their experience in international teamwork they are predetermined to start their career in academic area, international research and technology corporations, innovative companies, and state government.

Detaily programu

Jazyk výuky anglický
Standardní doba studia 4 roky
Forma studia kombinovaná , prezenční
Garant studia prof. Dr. Ing. Dalibor Vojtěch
Místo studia Praha
Kapacita 15 studentů
Kód akreditace (MŠMT kód) P0711D130008
VŠCHT kód AD102
Počet vypsaných témat 15

Vypsané disertační práce pro rok 2022/23

Analýza procesu přeměny kmene na sklo

Garantující pracoviště: Laboratoř anorganických materiálů
Školitel: Ing. Richard Pokorný, Ph.D.

Anotace


Hlavním cílem práce je analýza jednoho z kritických procesů při přeměně kmene, a to vývinem a kolapsem primární pěny na rozhraní kmen-tavenina. Primární pěna, která působí jako izolační vrstva zabraňující přenosu tepla do reagujícího kmene, je výsledkem mnoha různých reakcí uvolňujících plyny, které jsou zachyceny ve vrstvě primární taveniny na rozhraní kmene a skla. Bude studována morfologie pěny a chemické reakce uvolňující plyny.
kontaktujte vedoucího práce Místo výkonu práce: Laboratoř anorganických materiálů, VŠCHT Praha

Intermetalická pojiva pro diamantové nástroje

Garantující pracoviště: Ústav kovových materiálů a korozního inženýrství
Školitel: prof. Ing. Pavel Novák, Ph.D.

Anotace


Diamantové kompozity jsou důležité pro řadu odvětví současného průmyslu. Kvůli socioekonomickým omezením a zdravotním aspektům však musejí být zvažovány nekonvenční bezkobaltová pojiva, která budou pevná, přilnavá k diamantu a slinovatelná při relativně nízkých teplotách (do 750 °C). Tento projekt si klade za cíl popsat základy nového řešení – použití intermetalických pojiv. Diamantové částice budou povlakovány přechodným kovem a následně reaktivně slinovány s přídavkem hliníkového prášku za vzniku pevného aluminidového pojiva odolávajícího otěru a oxidaci. Proces přípravy bude vyvinut a popsán z pohledu mechanismu a kinetiky reaktivní sintrace. Připravené kompozity budou komplexně charakterizovány z pohledu mikrostruktury, fázového složení, mechanických, tribologických a chemických vlastností. Bude rovněž popsán vliv matrice na odvod tepla a úroveň grafitizace diamantu v průběhu přípravy kompozitu.
kontaktujte vedoucího práce Místo výkonu práce: Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha

Mechanismus korozního praskání korozivzdorných ocelí v přítomnosti chloridových depozitů v atmosféře

Garantující pracoviště: Ústav kovových materiálů a korozního inženýrství
Školitel: Ing. Tomáš Prošek, Ph.D.

Anotace


Jsou-li správně vybrány a aplikovány, korozivzdorné oceli vykazují vynikající dlouhodobou odolnost. Pro výběr vhodných korozivzdorných ocelí pro vodné elektrolyty je k dispozici dostatek dat, což však neplatí pro aplikace v atmosférických podmínkách. Případy selhání zavěšených stropních konstrukcí a dalších komponent prokázaly, že austenitické korozivzdorné oceli podléhají koroznímu praskání (KP) ve specifických atmosférických podmínkách charakterizovaných tvorbou koncentrovaných chloridových roztoků pod úsadami vysoce rozpustných chloridových solí i při nízkých teplotách. Toto bylo pozorováno v plaveckých halách, pro horolezecké skoby v přímořských oblastech a v petrochemickém průmyslu. Bezpečností komise Mezinárodní horolezecké asociace (UIAA) připravila ve spolupráci s VŠCHT nový standard, který klasifikuje horolezecké skoby do tříd podle jejich odolnosti proti KP a dalším formám korozního napadení. Dalším krokem bude klasifikace prostředí, která však vyžaduje hlubší porozumění korozním mechanismům za daných podmínek. V práci budou systematicky studovány faktory ovlivňující iniciaci a šíření KP jako například depoziční mechanismus, složení a koncentrace úsad, tahové napětí, vliv štěrbin a akumulace agresivních iontů, chemické složení skal, opakované odstraňování úsad deštěm a kondenzací, složení korozivzdorných ocelí a jejich mikrostruktura a další. Důraz bude věnován in situ experimentům pomocí rentgenové mikrotomografie (μ-CT), která umožňí sledovat vznik a šíření trhlin v reálném čase. Zároveň probíhá rozsáhlý expoziční program vzorků korozivzdorných ocelí a alternativních materiálů na stanicích po celém světě, který je řízený UIAA. Tento program bude podporován formou provádění analýz poškození a dalšími doprovodnými měřeními a zkouškami.
kontaktujte vedoucího práce Místo výkonu práce: Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha

Mechanismus vzniku intermetalických sloučenin při mechanickém legování

Garantující pracoviště: Ústav kovových materiálů a korozního inženýrství
Školitel: prof. Ing. Pavel Novák, Ph.D.

Anotace


Mechanické legování je populární technologie pro přípravu prášků slitin nebo intermediálních fází (např. intermetalik, karbidů nebo boridů) prostřednictvím vysokoenergetického mechanického mletí. Vysoká obliba metody je dána především tím, že obvykle vede k získání nanostrukturovaných materiálů a tím, že i vzájemně nemísitelné prvky mohou při ní vytvořit tuhé roztoky. Přestože je známý výsledek a existuje několik popisů procesu, přesný mechanismus vzniku intermetalik při tomto procesu není dosud plně pochopen. Důvodem pravděpodobně je široká škála možných parametrů a nemožnost přímého měření teploty prášku v mlecí nádobě. Tato práce počítá s následujícím plánem: nepřímé stanovení maximální teploty prášků v závislosti na podmínkách mletí (rychlost otáčení, poměr hmotnosti prášku a mlecích koulí, velikost koulí) prostřednictvím tepelného rozkladu solí, porovnání fázového složení mechanicky legovaných prášků se srovnávací směsí prášků vystavenou stejné teplotě v peci a pozorování časové závislosti mikrostruktury a fázového složení pomocí XRD a elektronové mikroskopie (SEM, TEM). Mechanismus bude pozorován na různých systémech obsahujících křehké a tvárné prášky (např. Ti-Al, Ti-Si, Ti-Al-Si) a budou vysloveny obecné závěry ohledně mechanismu mechanického legování.
kontaktujte vedoucího práce Místo výkonu práce: Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha

Nanokrystalické materiály pro výkonovou fotoniku

Garantující pracoviště: Ústav skla a keramiky
Ústav fotoniky a elektroniky AV ČR, v.v.i.
Školitel: Ing. Jan Mrázek, Ph.D.

Anotace


Rostoucí výkon zdrojů záření pro infračervenou oblast vyžaduje nové materiály se zvýšenou luminiscenční účinností a teplotní stabilitou. Nanokrystalické materiály dopované prvky vzácných zemin jsou vhodnou alternativou k tradičním sklům a monokrystalům. Práce bude zaměřena na přípravu a charakterizaci transparentních nanokrystalických materiálů vycházejících ze systému Y2O3-Al2O3-SiO2 dopovaného prvky vzácných zemin. Bude studován vliv složení a podmínek přípravy na reakční a růstové mechanismy vzniku nanokrystalů rovnoměrně distribuovaných v amorfní matrici. Složení studovaného systému bude modifikováno za účelem snížení fononové energie nanokrystalů a zvýšení luminiscenční účinnosti v infračervené oblasti. Bude vypracován teoretický model přenosu energie v iontech vzácných zemin a výsledky budou porovnány s experimentálními výsledky luminiscenčních měřeních. Vybrané materiály budou využity pro přípravu aktivních optických vláken, které budou využity pro přípravu vláknových laserů.
kontaktujte vedoucího práce Místo výkonu práce: Ústav fotoniky a elektroniky AV ČR, v.v.i.

Nanostrukturovaná optická skla pro vláknové lasery

Garantující pracoviště: Ústav skla a keramiky
Ústav fotoniky a elektroniky AV ČR, v.v.i.
Školitel: Dr.Ing. Ivan Kašík

Anotace


Vláknové lasery jsou předmětem intenzivního výzkumu díky své vysoké účinnosti, kvalitnímu výstupnímu svazku, vysokému průměrnému výkonu a dalším výhodám, ze kterých profituje stále rostoucí okruh aplikací. Pro ty je zajímavá možnost generace více vlnových délek současně. Toho lze dosáhnout vhodnou volbou složení materiálu a jeho správným nanostrukturováním. V rámci práce bude pozornost zaměřena na výzkum skelných materiálů o různých matricích dopovaných erbiem a yterbiem emitujících v oblasti 1-1,5 um a jejich nanostrukturování v rámci přípravy nových typů optických vláken. Bude studována sklotvornost systémů, jejich index lomu, spektroskopické a mechanické vlastnosti. Nové poznatky vedoucí k výběru vhodného materiálového složení a metod jeho přípravy v podobě optických vláken budou následně ověřovány ve vláknových laserech.
kontaktujte vedoucího práce Místo výkonu práce: Ústav fotoniky a elektroniky AV ČR, v.v.i.

Nové přístupy k protikorozní ochraně ocelové výztuže betonu

Garantující pracoviště: Ústav kovových materiálů a korozního inženýrství
Školitel: doc. Ing. Milan Kouřil, Ph.D.

Anotace


Koroze ocelové výztuže je hlavní příčinou poškození železobetonových konstrukcí, které vyvolává obrovské ekonomické škody a představuje bezpečnostní riziko. Ochranu výztuže před korozí se dosud nepodařilo uspokojivě vyřešit. Rozvíjené přístupy jsou založeny na volbě odolnějších materiálů, použití vhodných povrchových úprav a aplikaci korozních inhibitorů, utěsňovacích prostředků a elektrochemických způsobů protikorozní ochrany. V práci budou rozvíjeno především využití elektrochemických technik pro urychlení transportu korozních inhibitorů k výztuži a pro zvýšení účinku utěsňovacích prostředků. Budou vyvíjeny metody elektrochemického testování účinnosti těchto ochranných postupů.
kontaktujte vedoucího práce Místo výkonu práce: Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha

Optické a mechanické vlastnosti barevných skelných vrstev

Garantující pracoviště: Ústav skla a keramiky
Školitel: doc. Dr. Ing. Martin Havlík Míka

Anotace


Barevné skelné vrstvy mají důležitý význam jak pro dekorování uměleckého skla, tak pro technické aplikace, jako jsou například fotonika a integrovaná optika. Nanášejí se obvykle ve formě tenkých vrstev na vhodný objemový substrát, s nímž vytvoří dlouhodobě pevné spojení. Podstatnou výhodou je velký účinek malého množství hmoty vrstvy, což umožňuje širokou modifikaci optických vlastností substrátu, aniž by bylo nutné měnit jeho vlastní chemické složení. Optické vlastnosti samotných barevných skelných vrstev je možné velmi účinně ovlivňovat vytvořením nanočástic prvků, jako jsou například Cu0, Ag0 a Au0. Jejich vliv je dán silnou absorpční a plazmonovou rezonanční interakcí s fotony, jež závisí na velikosti klastrů těchto kovových nanočástic. V dizertační práci budou na vhodných substrátech připraveny skelné vrstvy s klastry kovových nanočástic o řízené velikosti. U připravených vrstev budou měřeny jejich optické i mechanické vlastnosti a určen vliv chemického složení a tepelného zpracování vrstev. Na základě těchto experimentů bude vytvořen model tvorby a růstu klastrů nanočástic a jejich interakce s fotony.
kontaktujte vedoucího práce Místo výkonu práce: Ústav skla a keramiky, VŠCHT Praha

Podvojné vrstevnaté hydroxidy využitelné pro ukládání energie

Garantující pracoviště: Ústav chemie pevných látek
Školitel: prof. Ing. František Kovanda, CSc.

Anotace


Podvojné vrstevnaté hydroxidy jsou skupinou anorganických materiálů s vrstevnatou strukturou, v níž je kladný náboj hydroxidových vrstev obsahujících různé dvojmocné a trojmocné kationty kompenzován nábojem aniontů v mezivrství. Tyto sloučeniny lze je využít v řadě aplikací včetně materiálů vhodných pro ukládání elektrické energie. V práci bude studována struktura a vlastnosti podvojných vrstevnatých hydroxidů s různými kombinacemi elektrochemicky aktivních (např. Ni a Co) a dalších kationtů v hydroxidových vrstvách. Pozornost bude věnována vztahu mezi kationtovým složením hydroxidových vrstev, tvorbou fází s uspořádanou vrstevnatou krystalovou strukturou a elektrochemickým chováním připravených produktů. Sledován bude vliv opakovaných nabíjecích a vybíjecích cyklů na změny nábojové kapacity a strukturní stabilitu připravených podvojných vrstevnatých hydroxidů spojenou s možnými změnami ve složení a struktuře hydroxidových vrstev a mezivrství (interkalační a deinterkalační procesy, obsah krystalové vody apod.).
kontaktujte vedoucího práce Místo výkonu práce: Ústav chemie pevných látek, VŠCHT Praha

Pokročilé povlaky pro bezpečné použití vysokopevnostích ocelí v korozivních prostředích

Garantující pracoviště: Ústav kovových materiálů a korozního inženýrství
Školitel: Ing. Tomáš Prošek, Ph.D.

Anotace


Vysokopevností oceli s pevností nad 1 GPa nalézají široké použití v automobilovém průmyslu a ve stavebnictví. Umožňují snížit hmotnost konstrukcí při zachování nebo i zlepšení mechanických vlastností. Vzhledem k náchylnosti těchto materiálů k vodíkovému zkřehnutí však ve vysoce korozivních prostředích hrozí nebezpečí jejich selhání mechanismem křehkého lomu, vyvolaného vstupem atomárního vodíku do struktury základního kovu. V rámci několika projektů probíhá vývoj alternativních povlaků na bázi hliníku nebo organických povlaků plněných kovovými prášky, které zajistí dostatečnou ochranu prvků a konstrukcí z vysokopevnostních ocelí proti korozi a zároveň zabrání vstupu vodíku do struktury oceli a nebezpečí vodíkem vyvolaného praskání. Výzkum bude zaměřen na vývoj elektrochemických zkušebních technik, které umožní porovnání prototypů povlaků z hlediska ochrany proti vstupu vodíku v místech defektů, hledání optimálního složení a mikrostruktury ochranných povlaků a studium mechanismu šíření trhlin pomocí materiálové mikrotomografie (μCT). Laboratorní studie bude doplněna vyhodnocením vzorků povlakovaných vysokopevnostních ocelí exponovaných partnery projektu v prostředí mořské vody a na atmosférických stanicích. Hlavním výstupem práce bude metodika hodnocení náchylnosti povlakovaných ocelí k vodíkovému zkřehnutí.
kontaktujte vedoucího práce Místo výkonu práce: Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha

Slinuté silicidy jako nástrojové materiály budoucnosti

Garantující pracoviště: Ústav kovových materiálů a korozního inženýrství
Školitel: prof. Ing. Pavel Novák, Ph.D.

Anotace


Slinuté karbidy jsou velmi populárním materiálem pro výrobu nástrojů díky své tvrdosti, otěruvzdornosti a tepelné stabilitě. Problémem však je to, že dostupnost a cena wolframu a kobaltu v nich obsažených značně závisí na geopolitické situaci. Z tohoto důvodu jsou tyto prvky řazeny v Evropě na seznam tzv. kritických surovin. Tato práce směřuje k vývoji zcela nového nástrojového materiálu, který by tyto prvky vůbec neobsahoval. Budou vyvíjeny slinuté silicidy, kde bude tvrdou fází silicid přechodného kovu a pojivem kov nebo houževnatější intermetalická fáze. Vhodné kombinace tvrdé fáze a pojiva budou vybrány na základě termodynamického rozboru a dostupných informací o mechanických vlastnostech silicidů. Navržené kompozity budou připraveny technikami práškové metalurgie s využitím mechanického legování a slinování v plazmatu. Bude popsána mikrostruktura, fázové složení a mechanické a tribologické vlastnosti pro různé kombinace a poměry výztuže a matrice. Budou kvantifikovány vztahy mezi množstvím silicidu a výslednými vlastnostmi.
kontaktujte vedoucího práce Místo výkonu práce: Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha

Speciální skla

Garantující pracoviště: Laboratoř anorganických materiálů
Školitel: Ing. Petr Kostka, Ph.D.

Anotace


Práce bude zaměřena na přípravu a studium nových materiálů ze skupiny skel obsahujících sloučeniny těžkých kovů, zejm. oxidy. Skla oxidů těžkých kovů, v nichž je skelná síť namísto SiO2 tvořena oxidy jako např. TeO2, GeO2 nebo Sb2O3, jsou studována pro své význačné vlastnosti. Oproti běžným sklům vynikají zejména širokým intervalem propustnosti sahajícím do mnohem delších vlnových délek, vyšším indexem lomu, optickými nelineárními vlastnostmi, a díky vysokým rozpustnostem iontů vzácných zemin ve spojení s nižšími fononovými energiemi mají zářivé přechody v nich zabudovaných vzácných zemin vysokou kvantovou výtěžnost. Charakterizace připravených materiálů bude zahrnovat jejich základní fyzikálně-chemické vlastnosti, jako jsou hustota, molární objem, termální stabilita, chemická odolnost, tvrdost, optická propustnost, index lomu apod. Bude zkoumána korelace mezi strukturními jednotkami tvořícími skelnou síť a výslednými vlastnostmi a bude sledován i vliv technologických podmínek na tyto vlastnosti. Laboratoř na výzkumu spolupracuje se zahraničními pracovišti.
kontaktujte vedoucího práce Místo výkonu práce: Laboratoř anorganických materiálů, VŠCHT Praha

Stabilita půdních ternárních komplexů s toxickým oxoaniontem (As, Sb, Se) - vliv obsahu a forem železa a organického uhlíku

Garantující pracoviště: Ústav chemie pevných látek
Školitel: doc. Ing. Barbora Doušová, CSc.

Anotace


V půdních profilech se některé toxické prvky (arsen, antimon, selen) vyskytují jako oxoanionty primárně vázáné na hydratované oxidy a oxidy hydroxidy železa (HFO) za vzniku povrchových komplexů. Tento proces probíhá rovnovážnou adsorpcí oxoaniontů z půdního roztoku na aktivní povrchová místa půdních částic za přítomnosti dalších aniontů a rozpustných organických látek. Vznikají tak binární a ternární půdní komplexy, kde se váží anorganický oxid železa, organická látka a oxoanion. Adsorpce a komplexace probíhají v koloidním prostředí, které reaguje na iontovou sílu půdních roztoků (stabilizace nebo agregace částic). Podle nejnovějších výsledků je stabilita vznikajících ternárních komplexů kritická pro dlouhodobou stabilitu vázaných aniontových fází. Cílem práce bude kvalifikovat mechanismus vzniku ternárních komplexů organická fáze – oxid železa – aniontová částice, popsat jejich strukturu, vazebné vlastnosti a vliv prostředí na stabilitu jednotlivých složek komplexů, především oxoaniontů toxických prvků.
kontaktujte vedoucího práce Místo výkonu práce: Ústav chemie pevných látek, VŠCHT Praha

Tavicí procesy ve vitrifikačních technologiích

Garantující pracoviště: Laboratoř anorganických materiálů
Školitel: doc. Ing. Jaroslav Kloužek, CSc.

Anotace


Analýza dějů v průběhu vitrifikačního procesu je prováděna s využitím matematického modelu, jehož vstupní data modelu jsou získávána souborem experimentálních metod zahrnujícím vysokoteplotní sledování tavicích procesů, analýzu uvolněných plynů, termickou analýzu a stanovení oxidačně redukční rovnováhy v taveninách.
kontaktujte vedoucího práce Místo výkonu práce: Laboratoř anorganických materiálů, VŠCHT Praha

Využití hydratačních a sorpčních vlastností odpadních aluminosilikátů ve vodním hospodářství

Garantující pracoviště: Ústav chemie pevných látek
Školitel: doc. Ing. Barbora Doušová, CSc.

Anotace


Některé aluminosilikáty, ale i práškový stavební odpad, biochar, lignin jsou schopné absorbovat a zadržovat ve srovnání s půdami a sedimenty velké množství vody. Smísení těchto materiálů s vybranými půdními profily formou řízeného přídavku mohou ovlivnit vysychání půd, které se stává vzhledem ke stále častěji se vyskytujícím "suchým obdobím", a celkově nižším srážkovým úhrnům zásadním ekologickým problémem. Metoda přídavku materiálu s vysokou nasákavostí do ekosystému může významně přispět k lepšímu hospodaření s vodou a vyrovnání vodního cyklu.
kontaktujte vedoucího práce Místo výkonu práce: Ústav chemie pevných látek, VŠCHT Praha

VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČ: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum

VŠCHT Praha
na sociálních sítích
zobrazit plnou verzi