Dynamika nelineárních chemicko-fyzikálních procesů - od oscilací ke strukturám
Přednáška
Cvičení/laboratoř
2019,
zimní semestr
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Po
Út
St
Čt
Pá
Examinace | zkouška |
Jazyk výuky | čeština |
Úroveň | doktorský předmět |
Garant |
prof. Ing. Igor Schreiber, CSc. |
Anotace
Výklad začíná klasifikací dynamických systémů z pohledu spojitosti v čase a stavovém prostoru a z pohledu složitosti chování systému v čase.
Dále jsou popsány základy teorie stability a bifurkací.
Ve třetí části kurzu jsou uvedené metody použity k popisu přechodů dynamiky z ustáleného stavu na periodické oscilace a následně na
chaotické oscilace a ke kvantitativní charakterizaci chaotické dynamiky. Metodika je aplikována především na
chemické systémy se složitou kinetikou v míchaných popř. trubkových průtočných reaktorech a také je diskutována
souvislost mezi chaotickou dynamikou a hydrodynamickou turbulencí.
Poslední část předmětu popisuje efekty interakce mezi reakcí a transportem, zejména Turingovy struktury a tzv. struktury distribuované tokem. Jsou popsány aplikace na biologickou morfogenezi.
Dále jsou popsány základy teorie stability a bifurkací.
Ve třetí části kurzu jsou uvedené metody použity k popisu přechodů dynamiky z ustáleného stavu na periodické oscilace a následně na
chaotické oscilace a ke kvantitativní charakterizaci chaotické dynamiky. Metodika je aplikována především na
chemické systémy se složitou kinetikou v míchaných popř. trubkových průtočných reaktorech a také je diskutována
souvislost mezi chaotickou dynamikou a hydrodynamickou turbulencí.
Poslední část předmětu popisuje efekty interakce mezi reakcí a transportem, zejména Turingovy struktury a tzv. struktury distribuované tokem. Jsou popsány aplikace na biologickou morfogenezi.
Sylabus
1. Definice dynamického systému, systémy se spojitým a diskrétním časem, disipativní systémy, Liouvilleova věta.
2. Příklady systémů chemického, hydrodynamického a biologického typu vykazující složité dynamické chování.
3. Fázový-stavový prostor, trajektorie, asymptotická dynamika, invariantní množina, stabilita, atraktory, repelory a sedla, chaotický atraktor.
4. Stabilita ustálených stavů, Jacobiho matice, vlastní čísla/vektory, stabilní, nestabilní a neutrální invariantní vlastní podprostor/varieta.
5. Stabilita periodických trajektorií, matice monodromie, multiplikátory, invariantní podprostory/variety, homoklinické a heteroklinické orbity.
6. Strukturální stabilita. Základy bifurkační teorie, klasifikace bifurkací, posloupnosti bifurkací vedoucí k chaotické dynamice.
7. Charakterizace složité dynamiky (kvaziperiodicita, chaos), míry prostorové a časové složitosti, fraktální dimenze, Ljapunovovy exponenty, Kolmogorova entropie, klasifikace složitých atraktorů.
8. Určení charakteristik složitosti dynamiky z (experimentálních) časových řad. Rekonstrukce stavového prostoru, vyhlazení dat, aplikace analýzy základních komponent (singulární dekompozice). Výkonová spektra. Zadání projektu.
9. Numerické postupy k určení závislosti stacionárních bodů nebo periodických trajektorií na parametru - kontinuace a detekce bifurkací.
10.Základy analýzy stability stechiometrických sítí, identifikace pozitivních a negativních zpětných vazeb ve složitých reakčních mechanismech, podmínky vzniku nestabilit.
11.Příklady použití nelineární analýzy v chemických systémech, reakce Bělousova-Žabotinského, enzymové oscilace, biologické rytmy.
12.Prostorově distribuované systémy, složitá dynamika v reakčně-transportních a hydrodynamických systémech. Spontánní vznik prostorově nehomogenních struktur, Turingova bifurkace.
13.Klasifikace prostorových a časoprostorových struktur, aplikace v biologii, teorie morfogeneze a diferencovaný růst organismů.
14.Prezentace řešení projektu.
2. Příklady systémů chemického, hydrodynamického a biologického typu vykazující složité dynamické chování.
3. Fázový-stavový prostor, trajektorie, asymptotická dynamika, invariantní množina, stabilita, atraktory, repelory a sedla, chaotický atraktor.
4. Stabilita ustálených stavů, Jacobiho matice, vlastní čísla/vektory, stabilní, nestabilní a neutrální invariantní vlastní podprostor/varieta.
5. Stabilita periodických trajektorií, matice monodromie, multiplikátory, invariantní podprostory/variety, homoklinické a heteroklinické orbity.
6. Strukturální stabilita. Základy bifurkační teorie, klasifikace bifurkací, posloupnosti bifurkací vedoucí k chaotické dynamice.
7. Charakterizace složité dynamiky (kvaziperiodicita, chaos), míry prostorové a časové složitosti, fraktální dimenze, Ljapunovovy exponenty, Kolmogorova entropie, klasifikace složitých atraktorů.
8. Určení charakteristik složitosti dynamiky z (experimentálních) časových řad. Rekonstrukce stavového prostoru, vyhlazení dat, aplikace analýzy základních komponent (singulární dekompozice). Výkonová spektra. Zadání projektu.
9. Numerické postupy k určení závislosti stacionárních bodů nebo periodických trajektorií na parametru - kontinuace a detekce bifurkací.
10.Základy analýzy stability stechiometrických sítí, identifikace pozitivních a negativních zpětných vazeb ve složitých reakčních mechanismech, podmínky vzniku nestabilit.
11.Příklady použití nelineární analýzy v chemických systémech, reakce Bělousova-Žabotinského, enzymové oscilace, biologické rytmy.
12.Prostorově distribuované systémy, složitá dynamika v reakčně-transportních a hydrodynamických systémech. Spontánní vznik prostorově nehomogenních struktur, Turingova bifurkace.
13.Klasifikace prostorových a časoprostorových struktur, aplikace v biologii, teorie morfogeneze a diferencovaný růst organismů.
14.Prezentace řešení projektu.
Literatura
Marek M., Schreiber I.: Chaotic Behaviour of Deterministic Dissipative Systems, Cambridge Univ. Press (1995),
Holodniok M, Klíč A., Kubíček M., Marek M.: Metody analýzy nelineárních dynamických modelů, Academia (1986),
Murray J. D., Mathematical Biology, Springer, 1989 (1st ed.), 2002 (3rd ed.)
Scott A., The Nonlinear Universe, Springer (2007).
Holodniok M, Klíč A., Kubíček M., Marek M.: Metody analýzy nelineárních dynamických modelů, Academia (1986),
Murray J. D., Mathematical Biology, Springer, 1989 (1st ed.), 2002 (3rd ed.)
Scott A., The Nonlinear Universe, Springer (2007).